Publications

Research Papers

I have authored several reseach papers on privacy-preserving and explainable ML.

Please also check out my GitHub for the corresponding implementation packages and Google Scholar.

Publication Icon

Auto-GDA: Automatic Domain Adaptation for Efficient Grounding Verification in Retrieval-Augmented Generation

Tobias Leemann, Periklis Petridis, Giuseppe Vietri, Dionysis Manousakas, Aaron Roth, Sergul Aydore. International Conference on Learning Representations (ICLR), 2025.

Publication Icon

Attention Mechanisms Don’t Learn Additive Models: Rethinking Feature Importance for Transformers

Tobias Leemann, Alina Fastowski, Felix Pfeiffer, and Gjergji Kasneci.Transactions on Machine Learning Research (TMLR), 2024.

Publication Icon

I Prefer not to Say: Operationalizing Fair and User-guided Data Minimization

Tobias Leemann, Martin Pawelczyk, Christian Thomas Eberle, and Gjergji Kasneci. AAAI Conference on Artificial Intelligence, 2024.

Publication Icon

Gaussian Membership Inference Privacy

Tobias Leemann*, Martin Pawelczyk*, and Gjergji Kasneci. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Publication Icon

Language Models are Realistic Tabular Data Generators

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci.International Conference on Learning Representations (ICLR), 2023.

Publication Icon

When Are Post-hoc Conceptual Explanations Identifiable?

Tobias Leemann,* Michael Kirchhof,* Yao Rong, and Gjergji Kasneci. Uncertainty in Artificial Intelligence (UAI), 2023.

Publication Icon

Deep Neural Networks and Tabular Data: A Survey

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji Kasneci. IEEE Transactions on Neural Networks and Learning Systems, Early Access, 2022.

Publication Icon

A Consistent and Efficient Evaluation Strategy for Attribution Methods

Yao Rong,* Tobias Leemann,* Vadim Borisov, Gjergji Kasneci, and Enkelejda Kasneci. International Conference on Machine Learning, 2022.

Publication Icon

Multi-Step Training for Predicting Roundabout Traffic Situations

Moritz Sackmann, Tobias Leemann, Henrik Bey, Ulrich Hofmann, and Jörn Thielecke. IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.

Publication Icon

Distribution Preserving Multiple Hypotheses Prediction for Uncertainty Modeling

Tobias Leemann, Moritz Sackmann, Jörn Thielecke, and Ulrich Hofmann. 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2021.

Dissertation